

ARCHITEKTURWERKSTATT Arch. DI Andreas Heigl Peisching 9 2754 Waldegg +43 2633 20808

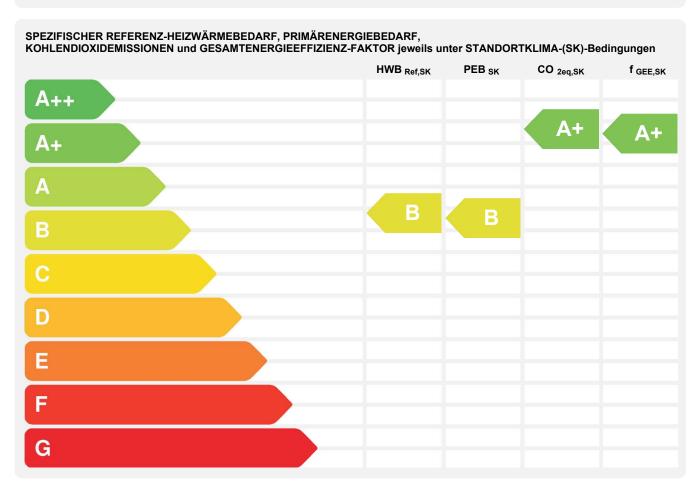
office@archiwerk.at

ENERGIEAUSWEIS

Planung Bildungseinrichtungen

Erweiterung VS Himberg

Marktgemeinde Himberg Hauptstraße 38 2325 Himberg



Energieausweis für Nicht-Wohngebäude

OIB ÖSTERREICHISCHES OIB-RICHTIINIE 6
INSTITUT FÜR BAUTECHNIK Ausgabe: April 2019

BEZEICHNUNG Erweiterung VS Himberg Umsetzungsstand Planung Gebäude(-teil) 2023 Zubau Baujahr Nutzungsprofil Bildungseinrichtungen Letzte Veränderung 2011 Straße Kirchenplatz 1 Katastralgemeinde Himberg PLZ/Ort 2325 Himberg KG-Nr. 5207 Grundstücksnr. Seehöhe 173 m

HWB_{Rof}. Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der **Warmwasserwärmebedarf** ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

KB: Der **Kühlbedarf** ist jene Wärmemenge, welche aus den Räumen abgeführt werden muss, um unter der Solltemperatur zu bleiben. Er errechnet sich aus den nicht nutzbaren inneren und solaren Gewinnen.

BefEB: Beim **Befeuchtungsenergiebedarf** wird der allfällige Energiebedarf zur Befeuchtung dargestellt.

KEB: Beim **Kühlenergiebedarf** werden zusätzlich zum Kühlbedarf die Verluste des Kühlsystems und der Kältebereitstellung berücksichtigt.

 ${\bf RK}$: Das ${\bf Referenzklima}$ ist ein virtuelles Klima. Es dient zur Ermittlung von Energiekennzahlen.

BelEB: der **Beleuchtungsenergiebedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht dem Energiebedarf zur nutzungsgerechten Beleuchtung.

BSB: Der **Betriebsstrombedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht der Hälfte der mittleren inneren Lasten.

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den jeweils allfälligen Betriebsstrombedarf, Kühlenergiebedarf und Beleuchtungsenergiebedarf, abzüglich allfälliger Endenergieerträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

fcee: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der **Primärenergiebedarf** ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB _{erm.}) und einen nicht erneuerbaren (PEB _{n.em.}) Anteil auf.

CO₂eq: Gesamte dem Endenergiebedarf zuzurechnenden äquivalenten Kohlendioxidemissionen (Treibhausgase), einschließlich jener für Vorketten.

SK: Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU vom 19. Mai 2010 über die Gesamtenergieeffizienz von Gebäuden bzw. 2018/844/EU vom 30. Mai 2018 und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist für Strom: 2013-09 – 2018-08, und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Nicht-Wohngebäude

GEBÄUDEKENNDATEN				EA	-Art:
Brutto-Grundfläche (BGF)	921,2 m ²	Heiztage	200 d	Art der Lüftung	Fensterlüftung
Bezugsfläche (BF)	736,9 m²	Heizgradtage	3 585 Kd	Solarthermie	- m²
Brutto-Volumen (V _B)	3 588,4 m³	Klimaregion	NSO	Photovoltaik	- kWp
Gebäude-Hüllfläche (A)	1 200,1 m ²	Norm-Außentemperatur	-12,5 °C	Stromspeicher	-
Kompaktheit (A/V)	0,33 1/m	Soll-Innentemperatur	22,0 °C	WW-WB-System (primär)	
charakteristische Länge (lc)	2,99 m	mittlerer U-Wert	0,23 W/m²K	WW-WB-System (sekund	är, opt.)
Teil-BGF	- m²	LEK _T -Wert	14,04	RH-WB-System (primär)	
Teil-BF	- m²	Bauweise	schwer	RH-WB-System (sekundä	ir, opt.)
Teil-V _B	- m³			Kältebereitstellungs-Syste	em

WÄRME- UND ENERGIEBEDARF	(Referenzklima)			Nachv	veis über den Gesamte	nergieeffizienz-Faktor		
	Erge	bnisse				Anforderungen		
Referenz-Heizwärmebedarf	$HWB_{Ref,RK} = 23,9$	kWh/m²a		entspricht	$HWB_{Ref,RK,zul} =$	41,6 kWh/m²a		
Heizwärmebedarf	$HWB_{RK} = 28,0$	kWh/m²a						
Außeninduzierter Kühlbedarf	$KB_{RK}^* = 0.6$	kWh/m³a		entspricht	$KB^*_{RK,zul} =$	1,0 kWh/m³a		
Endenergiebedarf	$EEB_{RK} = 56,5$	kWh/m²a						
Gesamtenergieeffizienz-Faktor	$f_{GEE,RK} = 0,59$			entspricht	$f_{GEE,RK,zul} =$	0,75		
Erneuerbarer Anteil n.ern. An	teil geringer als 20 %	der HEB Anf.		entspricht	Punkt 5.2.3 a, b	oder c		
WÄRME- UND ENERGIEBEDARF	(Standortklima)							
Referenz-Heizwärmebedarf	Q _{h,Ref,SK}	= 24 260	kWh/a		HWB _{Ref,SK} =	26,3 kWh/m²a		
Heizwärmebedarf	Q _{h,SK}	= 28 322	kWh/a		HWB _{SK} =	30,7 kWh/m²a		
Warmwasserwärmebedarf	Q_{tw}	= 2478	kWh/a		WWWB =	2,7 kWh/m²a		
Heizenergiebedarf	Q _{HEB,SK}	= 34 504	kWh/a		HEB _{SK} =	37,5 kWh/m²a		
Energieaufwandszahl Warmwasse	r				e _{AWZ,WW} =	2,39		
Energieaufwandszahl Raumheizun	ng				e _{AWZ,RH} =	1,18		
Energieaufwandszahl Heizen					e _{AWZ,H} =	1,29		
Betriebsstrombedarf	Q _{BSB}	= 1 937	kWh/a		BSB =	2,1 kWh/m²a		
Kühlbedarf	$Q_{KB,SK}$	= 13 661	kWh/a		KB _{SK} =	14,8 kWh/m²a		
Kühlenergiebedarf	$Q_{KEB,SK}$	= -	kWh/a		KEB _{SK} =	- kWh/m²a		
Energieaufwandszahl Kühlen					e _{AWZ,K} =	0,00		
Befeuchtungsenergiebedarf	$Q_{BefEB,SK}$	= -	kWh/a		BefEB _{SK} =	- kWh/m²a		
Beleuchtungsenergiebedarf	Q_{BelEB}	= 18 276	kWh/a		BelEB =	19,8 kWh/m²a		
Endenergiebedarf	Q _{EEB,SK}	= 54 717	kWh/a		EEB _{SK} =	59,4 kWh/m²a		
Primärenergiebedarf	Q _{PEB,SK}	= 88 345	kWh/a		PEB _{SK} =	95,9 kWh/m²a		
Primärenergiebedarf nicht erneuer	bar Q PEBn.ern.,SK	= 34 978	kWh/a		$PEB_{n.ern.,SK} =$	38,0 kWh/m²a		

Photovoltaik-Export

GWR-Zahl ErstellerIn ARCHITEKTURWERKSTATT
Ausstellungsdatum 25.11.2022 Peisching 9, 2754 Waldegg

Q_{PEBern.,SK} =

 $Q_{CO2eq,SK} =$

 $Q_{PVE,SK} =$

Gültigkeitsdatum 24.11.2032 Unterschrift

Geschäftszahl 111

Primärenergiebedarf erneuerbar

Gesamtenergieeffizienz-Faktor

äquivalente Kohlendioxidemissionen

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

53 367 kWh/a

7 691 kg/a

- kWh/a

- kWh/m²a

 $PEB_{ern.,SK} = 57,9 \text{ kWh/m}^2\text{a}$

 $CO_{2eq,SK} = 8,3 \text{ kg/m}^2\text{a}$

 $f_{GEE,SK} = 0.59$

PVE_{EXPORT,SK} =

Datenblatt GEQ Erweiterung VS Himberg

Anzeige in Druckwerken und elektronischen Medien

HWB_{Ref,SK} 26 f_{GEE,SK} 0,59

Gebäudedaten

Brutto-Grundfläche BGF 921 m^2 charakteristische Länge I_c 2,99 m Konditioniertes Brutto-Volumen 3 588 m^3 Kompaktheit A $_B$ / V $_B$ 0,33 m^{-1}

Gebäudehüllfläche A_B 1 200 m²

Ermittlung der Eingabedaten

Geometrische Daten: It. Einreichunterlagen, 25.11.2022, Plannr. AW111-02-01,02,03

Bauphysikalische Daten: It. Einreichunterlagen, 25.11.2022 Haustechnik Daten: It. Einreichunterlagen, 25.11.2022

Haustechniksystem

Raumheizung: Nah-/Fernwärme (Fernwärme aus Heizwerk (erneuerbar))

Warmwasser Stromheizung direkt (Strom)

Lüftung: Fensterlüftung, Nassraumlüfter vorhanden

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH - www.geq.at
Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6-1 / Unkonditionierte
Gebäudeteile vereinfacht nach ON B 8110-6-1 / Wärmebrücken pauschal nach ON B 8110-6-1 / Verschattung vereinfacht nach ON B 8110-6-1

Verwendete Normen und Richtlinien:

ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6-1 / ON H 5056-1 / ON H 5057-1 / ON H 5058-1 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / OIB-Richtlinie 6 Ausgabe: April 2019

Anmerkung

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Projektanmerkungen Erweiterung VS Himberg

Allgemein

Die energetische Qualität (thermische Hülle) des Gebäudes wird durch die Berechnung des HWB-REF, SK unter Annahme von standardisierten Randbedingungen (Klima, Raumtemperatur, Transmissionswärmeverluste, Solare Gewinne, Winddichtheit, hydraulische Anlagenwirkungsgrade, etc.) oder durch die Auswertung des fGEE, SK ermittelt. Als Bezugsfläche dient die energetische Gebäudenutzfläche die sich in der Regel von den allgemeinen Wohnflächenangaben unterscheidet.

Der EEB-RK ist der errechnete Endenergiebedarf des Gebäudes und wird anhand festgelegter Normwerte und Faktoren berechnet. (Klima, Raumtemperatur, Transmissionswärmeverluste, Solare Gewinne, Winddichtheit, hydraulische Anlagenwirkungsgrade, etc.)

Der tatsächliche Energie- und Wärmebedarf (m³ Erdgas, kWh Strom, Liter Heizöl, etc.) ist jedoch vom Nutzerverhalten abhängig und lässt sich aus dem errechneten Normbedarf nicht direkt ableiten. Heizkosten sind demgegenüber von einer Fülle weiterer Faktoren beeinflusst, die nicht vom Planer/Errichter gesteuert werden können.

Der Aussteller des Energieausweises haftet daher nur für die Richtigkeit des Energieausweises selbst, nicht aber für den tatsächlich anfallenden Energieverbrauch. *)

In den Bauteilen wurden nur jene Baustoffe berücksichtig, die wesentlicher Bestandteil der hüllbildenden bzw. wärmedämmenden Konstruktion (zur U-Wertberechnung) sind. In bauphysikalischer, brandschutztechnischer sowie statischer Hinsicht etc. sind die Aufbauten nicht vollständig und bei weiterer Planung bzw. Ausführung dahingehend, von befugtem Fachpersonal zu prüfen und ggf. zu ergänzen (Dampfdiffusion /-dichtheit, Winddichtheit, Feuchtigkeitsadichtung, Brandschutzanforderung, Statik etc.)

Die Änderung der Bauteile (z.B. Baustoffeigenschaften, Stärken der Baustoffe etc.) sowie bei Änderung der Anlage (Heizung, Warmwasser, Lüftung, Solaranlage, Klimaanlage, Beleuchtung etc.) in Zuge der weiterführende Planung und Bauausführung beeinflussen die Resultate des Energieausweises, ebenso maßliche Abweichungen (z.B. geänderte Fenstergrößen, geänderte Raumhöhen, Gebäudeabmessungen etc.) sowie die tatsächliche Luftdichtigkeit.

Bei Änderungen verliert daher der Energieausweis die Gültigkeit und ist neu zu berechnen. Es kann sich dem folgend auch die Höhe einer allfälligen Förderung ändern bzw. auch zum Verlust dieser führen.

Bei bestehenden Gebäuden kann der Ansatz des vereinfachten Verfahrens (OIB-RL 6 - Leitfaden Pkt. 4) zur Anwendung kommen. Wenn Bauteile nicht bekannt und nicht ermittelbar sind, können Annahmen getroffen werden die dem Stand der Technik des Baujahres entsprechen. Default U-Werte der unbekannten Bauteile wurden aus dem OIB-Leitfaden OIB-RL 6 für energietechnisches Verhalten von Gebäuden entnommen (Tabelle 4.3.1 und 4.3.2)

Bei der erforderlichen Berechnung zur sommerlichen Überwärmung wird der Nachweis anhand der OIB-Richtlinie 6 erbracht. **)

- *) In der Regel liegt der tatsächliche jährliche Verbrauch im Durchschnitt um ein Vielfaches höher als der errechnete Bedarf der standardisierten Energiekennzahlberechnung. Der Energieausweis betrachtet daher ausschließlich die energetische Qualität des Gebäudes. Damit lassen sich grundsätzliche Aussagen zur energetischen Qualität ähnlich wie der Verbrauch eines Kraftfahrzeuges im Typenschein des Gebäudes treffen.
- **) Die Berechnung zur sommerlichen Überwärmung wird dem zugehörigen Energieausweis hinten angehängt.

Der Energieausweis dient lediglich der Information. Die Angaben im Energieausweis beziehen sich auf das gesamte Wohngebäude oder den oben bezeichneten Gebäudeteil. Der Energieausweis ist lediglich dafür gedacht,

Projektanmerkungen Erweiterung VS Himberg

einen überschlägigen Vergleich von Gebäuden zu ermöglichen.

Auf Grund des Energieausweisvorlagegesetzes (EAVG) muss bei jeder Veräußerung sowie bei Vermietung und Verpachtung von Gebäuden oder Nutzungsobjekten (Wohnungen, Büros, Geschäftslokale) der Verkäufer dem Käufer oder Bestandnehmer (Mieter, Pächter) ein Energieausweis vorgelegt werden und in allen Verkaufs- und In-Bestand-Gabe-Inserate auf den HWB-REF, SK und den fGEE, SK hingewiesen werden.

Bauteile

It. Einreichunterlagen

Fenster

It. Einreichunterlagen

Geometrie

It. Einreichunterlagen

Haustechnik

It. Einreichunterlagen

Bauteil Anforderungen Erweiterung VS Himberg

BAUTE	EILE	R-Wert	R-Wert min	U-Wert	U-Wert max	Erfüllt
AW01	AW01 - Außenwand			0,16	0,35	Ja
ZW01	IW06 - Trennwand zu Bestand			0,42	1,30	Ja
EB01	BA01a - Fußboden gegen Erdreich (EG)	5,53	3,50	0,17	0,40	Ja
FD01	DA01 - Dach Flachdach			0,12	0,20	Ja

FENSTER	U-Wert	U-Wert max	Erfüllt
Prüfnormmaß Typ 1 (T1) (gegen Außenluft vertikal)	0,77	1,70	Ja
Prüfnormmaß Typ 2 (T2) (gegen Außenluft vertikal)	0,71	1,70	Ja

Einheiten: R-Wert [m²K/W], U-Wert [W/m²K] Quelle U-Wert max: NÖ BTV 2014 U-Wert berechnet nach ÖNORM EN ISO 6946

Ol3-Klassifizierung - Ökologie der Bauteile Erweiterung VS Himberg

Datum BAUBOOK: 12.10.2022	V _B	3 588,36 m³	l c	2,99 m
	ΑB	1 200,15 m ²	KÖF	2 102,20 m ²
	BGF	921,18 m ²	\bigcup_{m}	0,23 W/m ² K

Bautei	le		Fläche	PENRT	GWP	AP	∆Ol3
			A [m²]	[MJ]	[kg CO2]	[kg SO2]	
AW01	AW01 - Außenwand		441,4	373 678,2	25 029,0	61,8	56,3
FD01	DA01 - Dach Flachdach		307,1	1 855 355	128 653,6	537,5	504,6
EB01	BA01a - Fußboden gegen Erdreich (E	G)	307,1	654 154,1	47 012,1	147,0	160,3
ZW01	IW06 - Trennwand zu Bestand		271,5	143 236,0	12 494,6	35,2	42,5
ZD01	D01-D03 - Geschossdecke		614,1	802 678,7	75 004,4	214,8	110,6
FE/TÜ	Fenster und Türen		144,6	315 391,2	19 329,0	100,5	168,4
		Summe		4 144 494	307 523	1 097	
-		PENRT (Primärene Ökoindex PENRT	rgieinhalt	nicht ern.)	[MJ/m²	•	1 971,34 147,13
		GWP (Global Warm Ökoindex GWP	ning Poten	ntial)	[kg CO2/m² OI GWP F	-	146,28 98,14
		AP (Versäuerung)			[kg SO2/m²	KOF]	0,52
		Ökoindex AP			OI AP F	unkte	124,68
		Ol3-lc (Ökoindex)					74,14
		OI3-Ic = (PENRT + 0	SWP + AP) / (2+lc)			

Ol3-Berechnungsleitfaden Version 4.0, 2018; BG0

OI3-Schichten

Erweiterung VS Himberg

Schichtbezeichnung	Dichte [kg/m³]	im Bauteil		
Ol3-Bezeichnung		ANALO 4 TIMES		
Innenputz Baumit SpeziMaschinenputz Weiß	1 250	AW01, ZW01		
Planziegel (HLZ) POROTHERM 25-38 Plan	800	AW01, ZW01		
Klebespachtel Baumit KlebeSpachtel	1 400	AW01		
Fassadendämmplatte EPS-F Baumit FassadenDämmplatte EPS-F	15	AW01		
Silikatputz+Armierung Baumit SilikatTop	1 800	AW01		
Bauteilfuge (MW) KI Tektalan A2-SD (Steinwolle-Platte)	110	ZW01		
Zement- u. Zementfließestriche Baumit Estriche	2 000	ZD01, EB01		
PE-Folie BACHL PE-Dampfbremsfolie Klasse E, B2, 100μm	650	ZD01, EB01		
Trittschalldämmplatte TDPT ISOVER TRITTSCHALL-DÄMMPLATTE T	105	ZD01, EB01		
Dampfbremse BACHL PE-Dampfbremsfolie Klasse E, B2, 100µm	650	ZD01, EB01		
Gebundene Schüttung Splittschüttung (zementgebunden)	1 800	ZD01, EB01		
E-KV-5, 1-lagig Bauder Elastomerbitumenbahn E-KV-5 feinbestreut	1 150	EB01		
Stahlbeton (WU) Stahlbeton 160 kg/m³ Armierungsstahl (2 Vol.%)	2 400	EB01		
XPS AUSTROTHERM XPS TOP 70 SF	39	EB01		
Stahlbeton Stahlbeton 160 kg/m³ Armierungsstahl (2 Vol.%)	2 400	FD01, ZD01		
MF-Decke Gipsfaserplatte (1125 kg/m³)	1 125	FD01		
Metall-UK Aluminiumblech	2 800	FD01		
Luft steh., W-Fluss horizontal 160 < d <= 165 mm	1	FD01		
Dampfsperre, vollflächig verklebt Würth Dampfbremse Wütop DB 10	250	FD01		
EPS W25 Gefälledämmplatten (20-42cm) AUSTROTHERM EPS W20	20	FD01		
Abdichtung E-KV-5 - vollflächig geklebt Bauder Elastomerbitumenbahn E-KV-5 feinbestreut	1 150	FD01		
Abdichtung E-KV-5 vollflächig geflämmt Bauder Elastomerbitumenbahn E-KV-5 feinbestreut	1 150	FD01		
Vlies Vlies PP	300	FD01		

OI3-Schichten

Erweiterung VS Himberg

Kiesschüttung	1 700	FD01
Sand, Kies lufttrocken, Pflanzensubstrat		

Baumeister / Baufirma / Bauträger / Planer

[W/m² BGF]

Heizlast Abschätzung

Erweiterung VS Himberg

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berechnungsblatt

Bauherr

Marktgemeinde Himberg
Hauptstraße 38
2325 Himberg
Tel.:
Tel.:

Norm-Außentemperatur: -12,5 °C Standort: Himberg
Berechnungs-Raumtemperatur: 22 °C Brutto-Rauminhalt der

Temperatur-Differenz: 34,5 K beheizten Gebäudeteile: 3 588,36 m³

Gebäudehüllfläche: 1 200,15 m²

Bauteile	Fläche A [m²]	Wärmed koeffizient U [W/m² K]	Korr faktor f [1]	Leitwert
AW01 AW01 - Außenwand	441,39	0,160	1,00	70,54
FD01 DA01 - Dach Flachdach	307,06	0,116	1,00	35,70
FE/TÜ Fenster u. Türen	144,64	0,756		109,39
EB01 BA01a - Fußboden gegen Erdreich (EG)	307,06	0,174	0,70	37,43
ZW01 IW06 - Trennwand zu Bestand	271,45	0,424		
Summe OBEN-Bauteile	307,06			
Summe UNTEN-Bauteile	307,06			
Summe Außenwandflächen	441,39			
Summe Wandflächen zum Bestand	271,45			
Fensteranteil in Außenwänden 24,7 %	144,64			
Summe			[W/K]	253
Wärmebrücken (vereinfacht)			[W/K]	27
Transmissions - Leitwert			[W/K]	295,34
Lüftungs - Leitwert			[W/K]	749,18
Gebäude-Heizlast Abschätzung	Luftwechsel =	: 1,15 1/h	[kW]	36,0

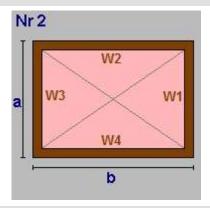
Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die Dimensionierung ist eine Heizlast-Berechnung gemäß ÖNORM H 7500 erforderlich.

Dem Lüftungsleitwert liegt eine Nutzung von 24 Stunden mal 365 Tage zugrunde. Die erforderliche Leistung für die Warmwasserbereitung ist unberücksichtigt.

Flächenbez. Heizlast Abschätzung (921 m²)

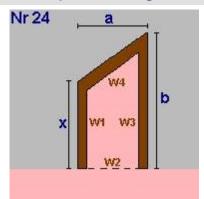
39.12

Bauteile

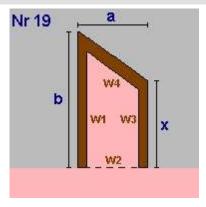

Erweiterung VS Himberg

Note		rung vo minberg							
Penanguiz	AW01	AW01 - Außenwand			von Innen na	ch Außen	Dicke	λ	d/λ
Planziegel (HLZ) (Mz) Composition Co	Innennutz				VON IIIIION NE	on, taloon			
Rebespachte	-	(HI 7)						•	-
Fassadendammplatte EPS-F 0,000	-	•					•		
February Februar	•								
Selikatputz+Armierung									•
Note	•						•		
No	Silikatputz	TAITHEIUNG			Rse+Rsi = 0 17	Dicke gesan			
Note	7 W01	IW06 - Trennwand zu Re	etand		NSE+NSI - 0, 17	Dicke gesali	11 0,4750	O-Weit	0,10
Plantziegel (H.LZ) Rautelifuge (MW) Rase+Rsi = 0,26 Dicke gesamt 0,305 U.Wert 0,039 1,025 0,039 0,039 1,026 0,039 1,026 0,039 0,03	21101	11100 - ITCHINWANA 24 DC	Jana		von Innen na	ch Außen	Dicke	λ	d/λ
Plantziegel (H.LZ) Rautelifuge (MW) Rase+Rsi = 0,26 Dicke gesamt 0,305 U.Wert 0,039 1,025 0,039 0,039 1,026 0,039 1,026 0,039 0,03	Innenputz						0.0150	0.780	0.019
Bauteilfüge (MW)	-	(HI 7)					•	-,	•
Res+Rsi = 0,26							•		
EB01 BA01a - Fußboden gegen Erdreich (EG) von Innen nach ⊿ißen Dicke \$\lambda \lambda \lamb	Baatomag	S (WWV)			Rse+Rsi = 0.26	Dicke gesan	•		
Von Innen nach ∠⊌€n Dicke X d / X Zement-u. Zementfließestriche F 0,0600 1,400 0,043 PE-Folie 0,0002 0,500 0,000 Trittschalldämmplatte TDPT 0,0300 0,033 0,909 Dampfbremse 0,0060 0,0002 0,500 0,000 Gebundene Schüttung 0,0650 1,400 0,046 E-KV-5, 1-lagig 0,0050 0,170 0,029 Stahlbeton (WU) 0,250 0,100 XPS 0,1600 0,360 0,444 Rse+Rsi = 0,17 Dicke gesamt 0,5704 U-Wert 0,170 ZD01 D01-D03 - Geschossdeck Von Innen nach ∠w€n Dicke gesamt 0,5704 U-Wert 0,170 Zement- u. Zementfließestriche F 0,0600 1,400 0,043 PE-Folie 0,0002 0,500 0,000 Trittschalldämmplatte TDPT 0,0002 0,500 0,000 Trittschalldämmplatte TDPT 0,0002 0,500 0,000 Gebundene Schüttung 0,0650 1,400 0,404 Stahlbeton Rse+Rsi = 0,26 Dicke gesamt 0,4054 U-Wert 0,74 FD01 DA01 - Dach Flachdach Von Außen nach Innen Dicke X d/ X Klesschüttung Nes+Rsi = 0,26 Dicke gesamt 0,4054 U-Wert 0,74 FD01 DA01 - Dach Flachdach Von Außen nach Innen Dicke X d/ X Klesschüttung X 0,0050 0,203 0,002 Abdichtung E-KV-5 vollflächig geflämmt 0,0050 0,770 0,029 Abdichtung E-KV-5 vollflächig geklebt 0,0050 0,230 0,002 Abdichtung E-KV-5 vollflächig verklebt 0,0050 0,230 0,002 Abdichtung E-KV-5 vollflächig verklebt 0,0050 0,230 0,002 Abdichtung E-KV-5 vollflächig verklebt 0,0050 0,230 0,000 Metall-UK dazw 0,0160 0,0000 0,0000 Metall-UK dazw 0,0160 0,0000 0,0000 Metall-UK dazw 0,0160 0,0000 0,0000 RT0 8,6776 RT0 8,523 RT 8,6004 Dicke gesamt 0,8100 U-Wert 0,120 Dicke gesamt 0,8100 U-Wert 0,120 Dicke gesamt 0,8100 U-Wert 0,120 Dicke gesamt 0,8100 U-Wert 0,1	EB01	BA01a - Fußboden gege	n Erdrei	ch (EG			,		-,
PE-Folie		3.3				ch Außen	Dicke	λ	d/λ
Trittschalldämmplatte TDPT 0,0300 0,0303 0,909 Dampfbremse 0,0002 0,500 0,006 Gebundene Schüttung 0,0650 1,400 0,065 E-KV-5, 1-lagig 0,0500 0,170 0,025 Stahlbeton (WU) 0,2500 2,500 0,100 XPS None 1,600 0,036 4,444 Zement- u. Zementfließestriche F 0,0600 1,400 0,002 PE-F-Olie F 0,0600 1,400 0,002 PE-F-Olie F 0,0600 1,400 0,003 PE-F-Olie F 0,0002 0,500 0,000 Trittschalldämmplatte TDPT F 0,0002 0,500 0,000 Gebundene Schüttung Rse+Rsi = 0,26 Dicke gesamt 0,405 U-Wert 0,74 FD01 DA01 - Dach Flachdach Von Außen nach Inne Dicke gesamt 0,405 U-Wert 0,74 Kiesschüttung * Von Außen nach Inne 0,0500 2,000 0,025 <t< td=""><td>Zement- u</td><td>. Zementfließestriche</td><td></td><td></td><td>F</td><td></td><td>0,0600</td><td>1,400</td><td>0,043</td></t<>	Zement- u	. Zementfließestriche			F		0,0600	1,400	0,043
Dampfbremse	PE-Folie						0,0002	0,500	0,000
Gebundene Schüttung 1,400 0,046 1,400 0,046 1,400 0,046 1,400 0,046 1,400 0,046 1,400 0,046 1,400 0,045 1,400 0,045 1,400 0,045 1,400 0,045 1,400 1,40	Trittschallo	lämmplatte TDPT					0,0300	0,033	0,909
E-KV-5, 1-lagig Stahlbeton (WU) XPS Rse+Rsi = 0,17 Dicke gesamt 0,500 0,100 D01-D03 - Geschossdecke Von Innen nach Δuβen Zement- u. Zementfließestriche Zement- u. Zementfließestrich	Dampfbrer	nse					0,0002	0,500	0,000
E-KV-5, 1-lagig Stahlbeton (WU) XPS Rse+Rsi = 0,17 Dicke gesamt 0,500 0,100 Rse+Rsi = 0,17 Dicke gesamt 0,500 0,000 Rse+Rsi = 0,17 Rse+Rsi = 0,26 Dicke gesamt 0,405 Rse+Rsi = 0,26 Rse+Rsi = 0,26 Dicke gesamt 0,405 Rse+Rsi = 0,26 Rse+Rsi = 0,26 Dicke gesamt 0,405 Rse+Rsi = 0,26 Rse+Rsi = 0,26 Dicke gesamt 0,405 Rse+Rsi = 0,26 Rse+Rsi = 0,26 Dicke gesamt 0,405 Rse+Rsi = 0,26	Gebunden	e Schüttung					0,0650	1,400	0,046
Stahlbeton (WU) XPS	E-KV-5, 1-	lagig							
XPS									
Rse+Rsi = 0,17 Dicke gesamt 0,5704 U-Wert 0,17		,							
Von Innen nach Außen Dicke λ d / λ					Rse+Rsi = 0,17	Dicke gesan			
Zement- u. Zementfließestriche	ZD01	D01-D03 - Geschossded	ke						
PE-Folie						ch Außen			
Trittschalldämmplatte TDPT		. Zementfließestriche			F		•		
Dampfbremse 0,0002 0,500 0,000 0,000 0,000 0,000 0,000 0,000 0,006 0,006 0,006 0,006 0,006 0,006 0,006 0,006 0,000 0,00	PE-Folie								
Cabundene Schüttung	Trittschallo	lämmplatte TDPT					0,0300	0,033	0,909
Stahlbeton Rse+Rsi = 0,26 Dicke gesamt 0,4054 U-Wert 0,74	Dampfbrer	nse						0,500	0,000
Rse+Rsi = 0,26 Dicke gesamt 0,4054 U-Wert 0,74	Gebunden	e Schüttung					0,0650	1,400	0,046
FD01 DA01 - Dach Flachdach Von Außen nach Innen Dicke λ d / λ Kiesschüttung * 0,0500 2,000 0,025 Vlies * 0,0050 0,220 0,023 Abdichtung E-KV-5 vollflächig geflämmt 0,0050 0,170 0,029 Abdichtung E-KV-5 - vollflächig geklebt 0,0050 0,170 0,029 EPS W25 Gefälledämmplatten (20-42cm) 0,3100 0,038 8,158 Dampfsperre, vollflächig verklebt 0,0050 0,230 0,022 Stahlbeton 0,2500 2,500 0,100 Metall-UK dazw. 10,0 % 0,1650 221,00 0,000 Luft steh., W-Fluss horizontal 160 < d <= 165 mm	Stahlbeton	ı					0,2500	2,500	0,100
Kiesschüttung * 0,0500 2,000 0,025 Vlies * 0,0050 2,000 0,025 Vlies * 0,0050 0,220 0,023 Abdichtung E-KV-5 vollflächig geflämmt 0,0050 0,170 0,029 Abdichtung E-KV-5 - vollflächig geklebt 0,0050 0,170 0,029 EPS W25 Gefälledämmplatten (20-42cm) 0,3100 0,038 8,158 Dampfsperre, vollflächig verklebt 0,0050 0,230 0,022 Stahlbeton 0,2500 2,500 0,100 Metall-UK dazw. 10,0 % 0,1650 221,00 0,000 Luft steh., W-Fluss horizontal 160 < d <= 165 mm					Rse+Rsi = 0,26	Dicke gesan	nt 0,4054	U-Wert	0,74
Kiesschüttung * 0,0500 2,000 0,025 Vlies * 0,0050 0,220 0,023 Abdichtung E-KV-5 vollflächig geflämmt 0,0050 0,170 0,029 Abdichtung E-KV-5 - vollflächig geklebt 0,0050 0,170 0,029 EPS W25 Gefälledämmplatten (20-42cm) 0,3100 0,038 8,158 Dampfsperre, vollflächig verklebt 0,0050 0,230 0,022 Stahlbeton 0,2500 2,500 0,100 Metall-UK dazw. 10,0 % 0,1650 221,00 0,000 Luft steh., W-Fluss horizontal 160 < d <= 165 mm	FD01	DA01 - Dach Flachdach				a alla la mana	Dieles	2	4/2
Klesschutting * 0,00500 2,005 0,023 Vlies * 0,0050 0,220 0,023 Abdichtung E-KV-5 vollflächig geflämmt 0,0050 0,170 0,029 Abdichtung E-KV-5 - vollflächig geklebt 0,0050 0,170 0,029 EPS W25 Gefälledämmplatten (20-42cm) 0,3100 0,038 8,158 Dampfsperre, vollflächig verklebt 0,0050 0,230 0,022 Stahlbeton 0,2500 2,500 0,100 Metall-UK dazw. 10,0 % 0,1650 221,00 0,000 Luft steh., W-Fluss horizontal 160 < d <= 165 mm	Viene ele il t					ach Innen			
Abdichtung E-KV-5 vollflächig geflämmt Abdichtung E-KV-5 - vollflächig geklebt Abdichtung E-KV-5 - vollflächig geklebt EPS W25 Gefälledämmplatten (20-42cm) Dampfsperre, vollflächig verklebt Dampfsperre, vollflächig verklebt Stahlbeton Metall-UK dazw. Luft steh., W-Fluss horizontal 160 < d <= 165 mm 90,0 % MF-Decke Bicke 0,7550 RTo 8,6776 RTu 8,5232 RT 8,6004 0,0050 0,170 0,002 0,0030 0,022 0,003 0,022 0,003 0,022 0,003 0,003 0,003 0,003 0,000 0,000 0,000 0,0150 0,0150 0,0150 0,000 0,		ung							
Abdichtung E-KV-5 - vollflächig geklebt EPS W25 Gefälledämmplatten (20-42cm) Dampfsperre, vollflächig verklebt Stahlbeton Metall-UK dazw. Luft steh., W-Fluss horizontal 160 < d <= 165 mm MF-Decke RTo 8,6776 RTu 8,5232 RT 8,6004 0,0050 0,0050 0,0050 0,0050 0,0050 0,0050 0,0050 0,0050 0,0050 0,0050 0,0150		TIME TO STATE OF THE STATE OF T			*				
EPS W25 Gefälledämmplatten (20-42cm) 0,3100 0,038 8,158 Dampfsperre, vollflächig verklebt 0,0050 0,230 0,022 Stahlbeton 0,2500 2,500 0,100 Metall-UK dazw. 10,0 % 0,1650 221,00 0,000 Luft steh., W-Fluss horizontal 160 < d <= 165 mm									
Dampfsperre, vollflächig verklebt 0,0050 0,230 0,022 Stahlbeton 0,2500 2,500 0,100 Metall-UK dazw. 10,0 % 0,1650 221,00 0,000 Luft steh., W-Fluss horizontal 160 < d <= 165 mm			,						
Stahlbeton 0,2500 2,500 0,100 Metall-UK dazw. 10,0 % 0,1650 221,00 0,000 Luft steh., W-Fluss horizontal 160 < d <= 165 mm			n)						
Metall-UK dazw. 10,0 % 0,1650 221,00 0,000 Luft steh., W-Fluss horizontal 160 < d <= 165 mm		-							
Luft steh., W-Fluss horizontal 160 < d <= 165 mm									
MF-Decke 0,0150 0,400 0,038 Bro 8,6776 RTu 8,5232 RT 8,6004 Dicke gesamt 0,8100 U-Wert 0,12							0,1650		
Dicke 0,7550 RTo 8,6776 RTu 8,5232 RT 8,6004 Dicke gesamt 0,8100 U-Wert 0,12	Luft ste	h., W-Fluss horizontal 160 <	d <= 165	mm		90,0 %		0,917	0,162
RTo 8,6776 RTu 8,5232 RT 8,6004 Dicke gesamt 0,8100 U-Wert 0,12	MF-Decke						0,0150	0,400	0,038
						Dick	e 0,7550		
		RTo 8,6776	RTu	8,5232	RT 8,6004	Dicke gesar	nt 0,8100	U-Wert	0,12
	Metall-IIK	Achsabstand	0,800	Breite	0,080	Rs	se+Rsi 0,	14	

Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K], Dichte [kg/m³], λ [W/mK] *... Schicht zählt nicht zum U-Wert #... Schicht zählt nicht zur Ol3-Berechnung F... enthält Flächenheizung B... Bestandsschicht RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946



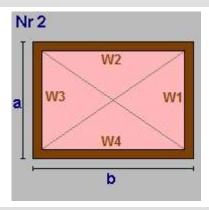
EG Grundform


```
Von EG bis OG2
a = 10,95
                 b = 15,42
lichte Raumhöhe = 3,19 + \text{obere Decke: } 0,41 \Rightarrow 3,60m
           168,85m² BRI
                                607,08m<sup>3</sup>
             39,37 \text{m}^{2} AW01 AW01 - Außenwand 55,44 \text{m}^{2} AW01
Wand W1
Wand W2
             39,37m<sup>2</sup> AW01
Wand W3
            55,44m² AW01
Wand W4
Decke
           168,85m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
           168,85m² EB01 BA01a - Fußboden gegen Erdreich (EG)
Boden
```

EG Trapez einseitig

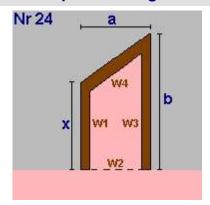

```
Von EG bis OG2
a = 9,10
               b = 14,00
x = 5,75
lichte Raumhöhe = 3,19 + obere Decke: 0,41 => 3,60m
           89,86m² BRI
                            323,09m³
Wand W1
           20,67m<sup>2</sup> AW01 AW01 - Außenwand
           32,72m^2 ZW01 IW06 - Trennwand zu Bestand
Wand W2
Wand W3
           50,34m<sup>2</sup> AW01 AW01 - Außenwand
          -44,16m<sup>2</sup> AW01
Wand W4
Decke
           89,86m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
Boden
           89,86m<sup>2</sup> EB01 BA01a - Fußboden gegen Erdreich (EG)
```

EG Trapez einseitig

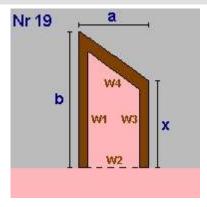

```
Von EG bis OG2
a = 5,39
                b
                   = 14,00
x = 3,94
lichte Raumhöhe = 3,19 + \text{obere Decke: } 0,41 \Rightarrow 3,60m
            48,35m<sup>2</sup> BRI
                              173,83m³
Wand W1
           -50,34m² AW01 AW01 - Außenwand
           19,38m² ZW01 IW06 - Trennwand zu Bestand 14,17m² AW01 AW01 - Außenwand
Wand W2
Wand W3
            41,03m<sup>2</sup> ZW01 IW06 - Trennwand zu Bestand
Wand W4
            48,35m² ZD01 D01-D03 - Geschossdecke
Decke
Boden
            48,35m<sup>2</sup> EB01 BA01a - Fußboden gegen Erdreich (EG)
```

EG Summe

EG Bruttogrundfläche [m²]: 307,06 EG Bruttorauminhalt [m³]: 1 104,00



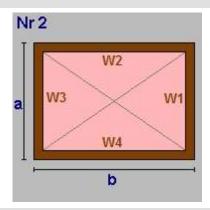
OG1 Grundform


```
Von EG bis OG2
a = 10,95
                b = 15,42
lichte Raumhöhe = 3,18 + \text{obere Decke: } 0,41 \Rightarrow 3,59m
           168,85m² BRI
                              605,39m³
            39,26m^2 AW01 AW01 - Außenwand 55,29m^2 AW01
Wand W1
Wand W2
            39,26m<sup>2</sup> AW01
Wand W3
            55,29m<sup>2</sup> AW01
Wand W4
Decke
           168,85m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
          -168,85m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
Boden
```

OG1 Trapez einseitig

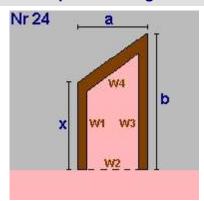

```
Von EG bis OG2
a = 9,10
               b = 14,00
x = 5,75
lichte Raumhöhe = 3,18 + obere Decke: 0,41 => 3,59m
           89,86m² BRI
                           322,19m³
Wand W1
           20,62m<sup>2</sup> AW01 AW01 - Außenwand
           32,63m^2 ZW01 IW06 - Trennwand zu Bestand
Wand W2
Wand W3
           50,20m² AW01 AW01 - Außenwand
          -44,04m<sup>2</sup> AW01
Wand W4
Decke
          89,86m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
          -89,86m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
Boden
```

OG1 Trapez einseitig

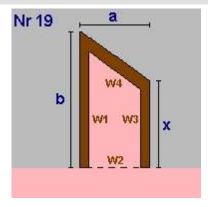

```
Von EG bis OG2
a = 5,39
                 b = 14,00
x = 3,94
lichte Raumhöhe = 3,18 + \text{obere Decke: } 0,41 \Rightarrow 3,59m
            48,35m<sup>2</sup> BRI
                           173,35m³
Wand W1
           -50,20m<sup>2</sup> AW01 AW01 - Außenwand
            19,33m² ZW01 IW06 - Trennwand zu Bestand 14,13m² AW01 AW01 - Außenwand
Wand W2
Wand W3
            40,92m<sup>2</sup> ZW01 IW06 - Trennwand zu Bestand
Wand W4
            48,35m² ZD01 D01-D03 - Geschossdecke
Decke
Boden
           -48,35m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
```

OG1 Summe

OG1 Bruttogrundfläche [m²]: 307,06 OG1 Bruttorauminhalt [m³]: 1 100,93



OG2 Grundform


```
Von EG bis OG2
a = 10,95
                  b = 15,42
lichte Raumhöhe = 3,18 + \text{obere Decke: } 0,76 \Rightarrow 3,94m
            168,85m² BRI
                                  664,42m<sup>3</sup>
             43,09\text{m}^2 AW01 AW01 - Außenwand 60,68\text{m}^2 AW01
Wand W1
Wand W2
             43,09m<sup>2</sup> AW01
Wand W3
             60,68m<sup>2</sup> AW01
Wand W4
Decke
            168,85m<sup>2</sup> FD01 DA01 - Dach Flachdach
           -168,85m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
Boden
```

OG2 Trapez einseitig


```
Von EG bis OG2
a = 9,10
                b = 14,00
x = 5,75
lichte Raumhöhe = 3,18 + obere Decke: 0,76 => 3,94m
           89,86m² BRI
                             353,61m³
           22,63m<sup>2</sup> AW01 AW01 - Außenwand
Wand W1
           35,81\text{m}^{2} ZW01 IW06 - Trennwand zu Bestand
Wand W2
           55,09m<sup>2</sup> AW01 AW01 - Außenwand
Wand W3
          -48,33m<sup>2</sup> AW01
Wand W4
Decke
           89,86m<sup>2</sup> FD01 DA01 - Dach Flachdach
          -89,86m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
Boden
```

OG2 Trapez einseitig

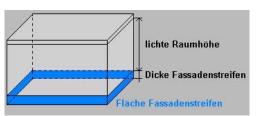

```
Von EG bis OG2
a = 5,39
                 b
                    = 14,00
x = 3,94
lichte Raumhöhe = 3,18 + \text{obere Decke: } 0,76 \Rightarrow 3,94m
            48,35m<sup>2</sup> BRI
                               190,25m³
Wand W1
           -55,09m² AW01 AW01 - Außenwand
            21,21m² ZW01 IW06 - Trennwand zu Bestand 15,50m² AW01 AW01 - Außenwand
Wand W2
Wand W3
            44,91m<sup>2</sup> ZW01 IW06 - Trennwand zu Bestand
Wand W4
            48,35m<sup>2</sup> FD01 DA01 - Dach Flachdach
Decke
           -48,35m<sup>2</sup> ZD01 D01-D03 - Geschossdecke
Boden
```

OG2 Summe

OG2 Bruttogrundfläche [m²]: 307,06 OG2 Bruttorauminhalt [m³]: 1 208,28

Deckenvolumen EB01

Fläche 307,06 m^2 x Dicke 0,57 $m = 175,15 m^3$


Bruttorauminhalt [m³]: 175,15

Fassadenstreifen - Automatische Ermittlung

 Wand
 Boden
 Dicke
 Länge
 Fläche

 AW01 - EB01
 0,570m
 50,15m
 28,60m²

Gesamtsumme Bruttogeschoßfläche [m²]: 921,18 Gesamtsumme Bruttorauminhalt [m³]: 3 588,36

Fenster und Türen **Erweiterung VS Himberg**

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs gtot	ams
		Prüfnorr	nma	ß Typ 1 (T1)	1,23	1,48	1,82	0,50	1,10	0,040	1,32	0,77		0,54		
		Prüfnorr	nma	ß Typ 2 (T2) - Fenstertür	1,48	2,18	3,23	0,50	1,10	0,040	2,53	0,71		0,54		
		Prüfnorr	nma	ß Typ 3 (T3) - Fenstertür	1,48	2,18	3,23	1,10	1,70		2,53	1,23		0,60		
											6,38					
NO	ľ															
T1	EG	AW01		2,40 x 2,20	2,40	2,20	5,28	0,50	1,10	0,040	3,95	0,77	4,07	0,54	0,50 0,07	
T1	EG	AW01		3,00 x 2,20	3,00	2,20	6,60	0,50	1,10	0,040	5,09	0,75	4,94	0,54	0,50 0,07	
T3	EG	ZW01	1	IT 2,30 x 2,80	2,30	2,80	6,44	1,10	1,70		4,90	1,24	0,00	0,60	0,50 1,00	
T1	OG1	AW01	1	, ,	2,40	2,20	5,28	0,50	1,10	0,040	3,95	0,77	4,07	0,54	0,50 0,07	
T1	OG1	AW01	1	3,00 x 2,20	3,00	2,20	6,60	0,50	1,10	0,040	5,09	0,75	4,94	0,54	0,50 0,07	0,5
T3	OG1		1	IT 2,30 x 2,80	2,30	2,80	6,44	1,10	1,70		4,90	1,24	0,00	0,60	0,50 1,00	
T1		AW01	1	, ,	2,40	2,20	5,28	0,50	1,10	0,040	3,95	0,77	4,07	0,54	0,50 0,07	0,5
T1	OG2	AW01	1	3,00 x 2,20	3,00	2,20	6,60	0,50	1,10	0,040	5,09	0,75	4,94	0,54	0,50 0,07	0,5
			8				48,52				36,92		27,03			
NW	,															
T1	EG	AW01	3	3,00 x 2,20	3,00	2,20	19,80	0,50	1,10	0,040	15,28	0,75	14,81	0,54	0,50 0,07	0,5
T1	OG1	AW01	3	3,00 x 2,20	3,00	2,20	19,80	0,50	1,10	0,040	15,28	0,75	14,81	0,54	0,50 0,07	0,5
T1	OG2	AW01	3	3,00 x 2,20	3,00	2,20	19,80	0,50	1,10	0,040	15,28	0,75	14,81	0,54	0,50 0,07	0,5
			9				59,40				45,84		44,43			
O T1	EG	AW01	1	2,40 x 2,20	2,40	2,20	5,28	0,50	1,10	0,040	3,95	0,77	4,07	0,54	0,50 0,07	0.5
T1	OG1	AW01	1		2,40	2,20	5,28	0,50	1,10	0,040	3,95	0,77	4,07	0,54	0,50 0,07	
T1		AW01	1		2,40	2,20	5,28	0,50	1,10	0,040	3,95	0,77	4,07	0,54	0,50 0,07	
			3	, - , -	, -	, -	15,84	-,			11,85		12,21	-,-		
S																
Т3	EG	ZW01	1	IT 0,90 x 2,00	0,90	2,00	1,80	1,10	1,70		1,26	1,28	0,00	0,60	0,50 1,00	0,0
Т3	OG1	ZW01	1	IT 0,90 x 2,00	0,90	2,00	1,80	1,10	1,70		1,26	1,28	0,00	0,60	0,50 1,00	0,0
			2				3,60				2,52		0,00			
SW																
T1	EG	AW01	2	2,90 x 1,30	2,90	1,30	7,54	0,50	1,10	0,040	5,68	0,75	5,65	0,54	0,50 0,07	0,5
T1	OG1	AW01	2	2,90 x 1,30	2,90	1,30	7,54	0,50	1,10	0,040	5,68	0,75	5,65	0,54	0,50 0,07	0,5
T1	OG2	AW01	2	2,90 x 1,30	2,90	1,30	7,54	0,50	1,10	0,040	5,68	0,75	5,65	0,54	0,50 0,07	0,5
			6		•		22,62				17,04		16,95			
W																
T2	EG	AW01	1	AT 2,00 x 2,80	2,00	2,80	5,60	0,50	1,10	0,040	4,15	0,77	4,34	0,54	0,50 1,00	0,0
T1	OG1	AW01	1	2,13 x 1,30	2,13	1,30	2,77	0,50	1,10	0,040	1,99	0,78	2,17	0,54	0,50 0,07	0,5
T1	OG2	AW01	1	2,13 x 1,30	2,13	1,30	2,77	0,50	1,10	0,040	1,99	0,78	2,17	0,54	0,50 0,07	0,5
			3				11,14				8,13		8,68			
Summe			31				161,12				122,30		109,30			

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor

amsc... Param. zur Bewert. der Aktivierung von Sonnenschutzeinricht. Sommer

Typ... Prüfnormmaßtyp

gtot ... Gesamtenergiedurchlassgrad der Verglasung inkl. Abschlüsse

Rahmen **Erweiterung VS Himberg**

Bezeichnung	Rb.re.	Rb.li.	Rb.o.	Rb.u.	%	Stulp Anz.		Pfosi Anz.		1	V-Sp. Anz.	Spb.	
Typ 1 (T1)	0,100	0,100	0,100	0,100	28								Internorm Kunststoff-Fensterrahmen KF310 (3-fach)
Typ 2 (T2)	0,100	0,100	0,100	0,100	21								Hochwärmedämmender Alu-Rahmen
Typ 3 (T3)	0,100	0,100	0,100	0,100	21								Alu-Rahmen (ohne thermischer Trennung)
AT 2,00 x 2,80	0,100	0,100	0,100	0,100	26	1	0,140)		1		0,100	"
IT 2,30 x 2,80	0,100	0,100	0,100	0,100	24	1	0,140)		1		0,100	Alu-Rahmen (ohne thermischer Trennung)
2,40 x 2,20	0,100	0,100	0,100	0,100	25			1	0,120	1		0,100	
3,00 x 2,20	0,100	0,100	0,100	0,100	23			1	0,120	1		0,100	, ,
2,90 x 1,30	0,100	0,100	0,100	0,100	25			1	0,120				Internorm Kunststoff-Fensterrahmen KF310 (3-fach)
IT 0,90 x 2,00	0,100	0,100	0,100	0,100	30								Alu-Rahmen (ohne thermischer Trennung)
2,13 x 1,30	0,100	0,100	0,100	0,100	28			1	0,120				Internorm Kunststoff-Fensterrahmen KF310 (3-fach)

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m]
Stb. Stulpbreite [m] H-Sp. Anz Anzahl der horizontalen Sprossen
Pfb. Pfostenbreite [m] V-Sp. Anz Anzahl der vertikalen Sprossen Pfb. Pfostenbreite [m] Typ Prüfnormmaßtyp

% Rahmenanteil des gesamten Fensters Spb. Sprossenbreite [m]

Kühlbedarf Standort Erweiterung VS Himberg

Kühlbedarf Standort (Himberg)

BGF 921,18 m^2 L T 280,35 W/K Innentemperatur 26 °C fcorr 1,00

BRI 3 588,36 m³

Gesamt	365		37 741	37 123	74 864	42 485	18 198	60 683		13 661
Dezember	31	1,29	5 154	5 109	10 263	3 619	396	4 014	1,00	0
November	30	5,11	4 217	4 132	8 349	3 484	559	4 044	1,00	0
Oktober	31	10,67	3 197	3 169	6 366	3 619	1 108	4 726	0,99	0
September	30	16,43	1 932	1 893	3 825	3 484	1 639	5 123	0,74	1 320
August	31	20,22	1 205	1 194	2 399	3 619	2 188	5 807	0,41	3 408
Juli	31	20,81	1 082	1 073	2 155	3 619	2 606	6 225	0,35	4 070
Juni	30	18,80	1 453	1 424	2 877	3 484	2 579	6 064	0,47	3 186
Mai	31	15,26	2 239	2 220	4 459	3 619	2 498	6 117	0,73	1 677
April	30	10,81	3 066	3 004	6 070	3 484	1 886	5 370	0,97	0
März	31	5,86	4 201	4 164	8 365	3 619	1 349	4 968	1,00	0
Februar	28	1,76	4 567	4 359	8 926	3 216	870	4 086	1,00	0
Jänner	31	-0,02	5 428	5 381	10 808	3 619	520	4 139	1,00	0
		temperaturen °C	verluste kWh	verluste kWh	kWh	kWh	kWh	kWh	3 3	kWh
Monate	Tage	Mittlere Außen-	Transm wärme-	Lüftungs- wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Ausnut- zungsgrad	Kühl- bedarf

 $KB = 14,83 \text{ kWh/m}^2\text{a}$

Außen induzierter Kühlbedarf Referenzklima Erweiterung VS Himberg

Außen induzierter Kühlbedarf Referenzklima

BGF 921,18 m^2 L T 280,35 W/K Innentemperatur 26 °C fcorr 1,00

BRI 3 588,36 m³

Gesamt	365		35 934	12 525	48 459	0	17 461	17 461		2 270
Dezember	31	2,19	4 966	1 731	6 697	0	413	413	1,00	0
November	30	6,16	4 005	1 396	5 401	0	550	550	1,00	0
Oktober	31	11,64	2 995	1 044	4 039	0	1 059	1 059	1,00	0
September	30	17,03	1 811	631	2 442	0	1 576	1 576	1,00	0
August	31	20,56	1 135	396	1 530	0	2 091	2 091	0,73	562
Juli	31	21,12	1 018	355	1 373	0	2 481	2 481	0,55	1 109
Juni	30	19,33	1 346	469	1 816	0	2 412	2 412	0,75	599
Mai	31	16,20	2 044	712	2 757	0	2 361	2 361	0,99	0
April	30	11,62	2 903	1 012	3 914	0	1 775	1 775	1,00	0
März	31	6,81	4 003	1 395	5 398	0	1 332	1 332	1,00	0
Februar	28	2,73	4 384	1 528	5 912	0	872	872	1,00	0
Jänner	31	0,47	5 325	1 856	7 181	0	538	538	1,00	0
		temperaturen °C	verluste kWh	verluste kWh	kWh	kWh	kWh	kWh		kWh
Monate	Tage	Mittlere Außen-	Transm wärme-	Lüftungs- wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Ausnut- zungsgrad	Kühl- bedarf

 $KB^* = 0,63 \text{ kWh/m}^3\text{a}$

RH-Eingabe

Erweiterung VS Himberg

Raumheizung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

<u>Abgabe</u>

Haupt Wärmeabgabe Flächenheizung

Systemtemperatur 40°/30°

Regelfähigkeit Einzelraumregelung mit elektronischem Regelgerät

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Verteilung</u>		Leitungslängen lt. Defaultwerten			
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]
Verteilleitungen	Ja	2/3	Ja	42,87	100
Steigleitungen	Ja	2/3	Ja	73,69	100
Anbindeleitunge	n Ja	1/3	Ja	257,93	

Speicher kein Wärmespeicher vorhanden

Bereitstellung

Bereitstellungssystem Nah-/Fernwärme

Energieträger Fernwärme aus Heizwerk (erneuerbar)

Betriebsweise gleitender Betrieb

Hilfsenergie - elektrische Leistung

Umwälzpumpe 223,70 W Defaultwert

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

WWB-Eingabe

Erweiterung VS Himberg

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung dezentral Anzahl Einheiten 7,4 Defaultwert

getrennt von Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung ohne Zirkulation Leitungslängen lt. Defaultwerten

gedämmt Verhältnis Leitungslänge Dämmstoffdicke zu [m]

Rohrdurchmesser

Verteilleitungen0,00Steigleitungen0,00

Stichleitungen* 6,00 Material Kunststoff 1 W/m

Speicher

Art des Speichers direkt elektrisch beheizter Speicher

Standort konditionierter Bereich mit Anschluss Heizregister Solaranlage

Baujahr Mehrere Kleinspeicher Anschlussteile gedämmt

Nennvolumen* 150 I Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher* $q_{b,WS} = 0.35 \text{ kWh/d}$ Defaultwert

Bereitstellung

Bereitstellungssystem Stromheizung direkt

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

Beleuchtung Erweiterung VS Himberg

Beleuchtung

gemäß ÖNORM H 5059-1:2019-01-15

Berechnung: Defaultwert

Beleuchtungsenergiebedarf

BelEB 19,84 kWh/m²a